Routines |
Prev: 14020 | Up: Map | Next: 14211 |
The address of this routine is found in the table of addresses. It is called via the calculator literal 37 by the routine at to_power. It is also called indirectly via fp_calc_2.
This subroutine handles the function LN X and is the second of the four routines that use the series generator to produce Chebyshev polynomials.
The approximation to LN X is found as follows:
|
||||
ln | 14099 | RST 40 | X | |
Perform step i.
|
||||
14100 | DEFB 61 | re_stack: X (in full floating-point form) | ||
14101 | DEFB 49 | duplicate: X, X | ||
14102 | DEFB 55 | greater_0: X, (1/0) | ||
14103 | DEFB 0 | jump_true to VALID: X | ||
14104 | DEFB 4 | multiply: X | ||
14105 | DEFB 56 | end_calc: X | ||
Report A - Invalid argument.
|
||||
14106 | RST 8 | Call the error handling routine. | ||
14107 | DEFB 9 | |||
Perform step ii.
|
||||
VALID | 14108 | DEFB 160 | stk_zero: X, 0 (the deleted 1 is overwritten with zero) | |
14109 | DEFB 2 | delete: X | ||
14110 | DEFB 56 | end_calc: X | ||
14111 | LD A,(HL) | The exponent, e, goes into A. | ||
14112 | LD (HL),128 | X is reduced to X'. | ||
14114 | CALL STACK_A | The stack holds: X', e. | ||
14117 | RST 40 | X', e | ||
14118 | DEFB 52 | stk_data: X', e, 128 | ||
14119 | DEFB 56,0 | |||
14121 | DEFB 3 | subtract: X', e' | ||
Perform step iii.
|
||||
14122 | DEFB 1 | exchange: e', X' | ||
14123 | DEFB 49 | duplicate: e', X', X' | ||
14124 | DEFB 52 | stk_data: e', X', X', 0.8 | ||
14125 | DEFB 240,76,204,204,205 | |||
14130 | DEFB 3 | subtract: e', X', X'-0.8 | ||
14131 | DEFB 55 | greater_0: e', X', (1/0) | ||
14132 | DEFB 0 | jump_true to GRE_8: e', X' | ||
14133 | DEFB 8 | |||
14134 | DEFB 1 | exchange: X', e' | ||
14135 | DEFB 161 | stk_one: X', e', 1 | ||
14136 | DEFB 3 | subtract: X', e'-1 | ||
14137 | DEFB 1 | exchange: e'-1, X' | ||
14138 | DEFB 56 | end_calc | ||
14139 | INC (HL) | Double X' to give 2*X'. | ||
14140 | RST 40 | e'-1, 2*X' | ||
GRE_8 | 14141 | DEFB 1 | exchange: X', e' (X'>0.8) or 2*X', e'-1 (X'<=0.8) | |
14142 | DEFB 52 | stk_data: X', e', LN 2 or 2*X', e'-1, LN 2 | ||
14143 | DEFB 240,49,114,23,248 | |||
14148 | DEFB 4 | multiply: X', e'*LN 2=Y1 or 2*X', (e'-1)*LN 2=Y2 | ||
Perform step iv.
|
||||
14149 | DEFB 1 | exchange: Y1, X' (X'>0.8) or Y2, 2*X' (X'<=0.8) | ||
14150 | DEFB 162 | stk_half: Y1, X', .5 or Y2, 2*X', .5 | ||
14151 | DEFB 3 | subtract: Y1, X'-.5 or Y2, 2*X'-.5 | ||
14152 | DEFB 162 | stk_half: Y1, X'-.5, .5 or Y2, 2*X'-.5, .5 | ||
14153 | DEFB 3 | subtract: Y1, X'-1 or Y2, 2*X'-1 | ||
Perform step v.
|
||||
14154 | DEFB 49 | duplicate: Y, X'-1, X'-1 or Y2, 2*X'-1, 2*X'-1 | ||
14155 | DEFB 52 | stk_data: Y1, X'-1, X'-1, 2.5 or Y2, 2*X'-1, 2*X'-1, 2.5 | ||
14156 | DEFB 50,32 | |||
14158 | DEFB 4 | multiply: Y1, X'-1, 2.5*X'-2.5 or Y2, 2*X'-1, 5*X'-2.5 | ||
14159 | DEFB 162 | stk_half: Y1, X'-1, 2.5*X'-2.5, .5 or Y2, 2*X'-1, 5*X'-2.5, .5 | ||
14160 | DEFB 3 | subtract: Y1, X'-1, 2.5*X'-3=Z or Y2, 2*X'-1, 5*X'-3=Z | ||
Perform step vi, passing to the series generator the parameter '12', and the twelve constants required.
|
||||
14161 | DEFB 140 | series_0C: Y1, X'-1, Z or Y2, 2*X'-1, Z | ||
14162 | DEFB 17,172 | |||
14164 | DEFB 20,9 | |||
14166 | DEFB 86,218,165 | |||
14169 | DEFB 89,48,197 | |||
14172 | DEFB 92,144,170 | |||
14175 | DEFB 158,112,111,97 | |||
14179 | DEFB 161,203,218,150 | |||
14183 | DEFB 164,49,159,180 | |||
14187 | DEFB 231,160,254,92,252 | |||
14192 | DEFB 234,27,67,202,54 | |||
14197 | DEFB 237,167,156,126,94 | |||
14202 | DEFB 240,110,35,128,147 | |||
At the end of the last loop the 'last value' is:
Perform step vii.
|
||||
14207 | DEFB 4 | multiply: Y1=LN (2**e'), LN X' or Y2=LN (2**(e'-1)), LN (2*X') | ||
14208 | DEFB 15 | addition: LN (2**e')*X')=LN X or LN (2**(e'-1)*2*X')=LN X | ||
14209 | DEFB 56 | end_calc: LN X | ||
14210 | RET | Finished: 'last value' is LN X. |
Prev: 14020 | Up: Map | Next: 14211 |